If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-20=0
a = 2; b = 6; c = -20;
Δ = b2-4ac
Δ = 62-4·2·(-20)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-14}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+14}{2*2}=\frac{8}{4} =2 $
| 3x2-11x+6=0 | | 16x2-56x+49=0 | | Y=20/(x^2-x) | | 2p-3=p+4 | | 5+7x=9x+10 | | 4x+(2x-7)=-1 | | 2(3)^x-8=46 | | -15x+8=-12x-15 | | x3-8x+15=0 | | -3x^2+150=0 | | X2-20x-84=0 | | 1.4t-0.4(t-3.1)=5/8 | | (m-4)^2=m^2-8m+16 | | 6a+3(a+2)=-39 | | 5/8=x+2/3 | | 8x-108=3x-8 | | -5/4x+2/3=x-5/4 | | x2+10x+25=0 | | 3x2+11=4 | | y=2·17 | | 1÷4x=2 | | 4(6x-1)=5(3x-7) | | 6a-3=2a+13= | | X2+15x-3250=0 | | 5a-3=2a+13 | | 0.14(y-6)+0.04y=0.10y-0.01(50) | | -2/5x^2-2=3×^2+1 | | 5=k÷7 | | X^3-2x^2X=0 | | x(8+7x)=0 | | 71/4-14d=36 | | -3(-7-5x)=201 |